Chapter 8: Real-World Applications
Drone Altitude Control
class DroneAltitudePID:
def __init__(self):
self.pid = PID(Kp=2.0, Ki=0.5, Kd=1.5, dt=0.01)
def compute_thrust(self, target_altitude, current_altitude):
base_thrust = 9.81 # Hover thrust
correction = self.pid.compute(target_altitude, current_altitude)
return base_thrust + correction
Robot Arm Control
Joint-space PID with gravity compensation.
Autonomous Vehicle Lane Keeping
MPC for path following with steering constraints.
# Simplified vehicle model
# x = [y, psi, v] (lateral pos, heading, velocity)
# u = [delta] (steering angle)
A = np.array([[0, v, 0],
[0, 0, v/L],
[0, 0, 0]])
B = np.array([[0], [v/L], [0]])
Comparison: PID vs MPC
| Aspect | PID | MPC |
|---|---|---|
| Complexity | Low | High |
| Constraints | Difficult | Native |
| Computation | Fast | Slower |
| MIMO systems | Limited | Natural |
| Optimality | No | Yes |
Congratulations! You've completed the Control Algorithms course! 🎯🚀